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Abstract

The forced vibration of an elastic half space produced by a rigid elliptic indenter oscillating about an axis per-
pendicular to the plane face of the half space is considered. The boundary conditions lead to a two-dimensional dual
integral equation in terms of the unknown normal stress. By appropriate substitution, the dual integral equation is first
reduced to a two-dimensional Fredholm integral equation. This is transformed to an infinite set of equations using
Abelian transformations. Next, the Abel-transformed variable of the unknown normal stress is expanded in terms of
orthogonal Jacobi polynomials, and by solving the system of linear equations, orthogonal polynomial solutions are
obtained. The method used to obtain the orthogonal polynomial solutions of this problem is new and the major ad-
vantage of this expansion technique is that it is valid for all frequencies. Detailed numerical work has been given for the
total load on the disc for different values of frequencies. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Problems involving a vibrating elastic body in contact with an elastic medium are of considerable
practical interest. To improve dynamic models of buildings and large structures, to ascertain their stability
against earthquake vibrations or to design ultrasonic hardness testing equipment, it is essential to inves-
tigate the dynamic response of elastic foundations or elastic plates on elastic media. Although a large
number of papers have been devoted to the subject, most of them are concerned with the problem where the
contact region is circular.

The physical requirement of a uniform displacement under the rigid body and a zero stress at the surface
away from the body, leads to a mixed boundary value problem which can be expressed in terms of a two-
dimensional dual integral equation.
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In the case of a circular elastic plate, Robertson (1965) and Gladwell (1968) reduced the two-dimensional
dual integral equation to a one-dimensional Fredholm integral equation and obtained a series solu-
tion. Awojobi and Grootenhuis (1965) solved the dual integral equation by a series of expansion proce-
dure. A direct method is proposed by Krenk and Schmidt (1981) in which the integral equation is solved
expressing the vertical stress in terms of Legendre polynomials. The solution implies a direct matrix rela-
tion between stresses and deformations. Apart from the numerical results for the low-frequency cases,
Luco and Westmann (1971) developed numerical solutions by reducing the Fredholm integral equation
to a system of algebraic equations and obtained various dynamic compliances for large values of fre-
quencies.

In order to model the dynamics of various large structures, the results for foundations other than cir-
cular ones are required. Foundations generally have elliptic cross-section and the implications for such a
geometry are considered in the present paper. Stallybrass and Scherer (1975) used a variational procedure
and obtained the analytical expression for the reciprocal of the total load under the elliptic disc. Roy (1986)
reconsidered the elliptic geometry problem and reduced the dual integral equation into a Fredholm integral
equation of the first kind which could be rearranged in a suitable form after separating out the terms
corresponding to the static solutions. Successive low-frequency terms are obtained by perturbing the static
solutions. So, for the case of elliptic punches, specific results have only been obtained for low values of
dimensionless frequency.

A knowledge of dynamic compliances for a larger frequency range is necessary if structural analysis is to
be performed incorporating the effect of soil-structure interaction. In this paper, we reformulate the
problem of dynamic compliances for the elliptic punch and obtain an orthogonal polynomial solution from
which we compute the numerical results for a significantly wider range of frequencies than previously
available.

Following Roy (1986), the two-dimensional dual integral equation involving the unknown stress under
the punch is reduced to a Fredholm integral equation of the first kind. Applying suitable transformations,
this equation can be converted into an infinite system of equations involving the Abelian transformation of
the Fourier coefficients of the unknown stress. Here, we express the unknown variable in terms of ortho-
gonal Jacobi polynomials. Using certain properties of orthogonal polynomials, an infinite set of linear
equations involving the coefficients of Jacobi polynomials is formed and by solving this set of equations, the
orthogonal polynomial solutions for dynamic compliances of the elliptic disc with vertical vibrations are
obtained. Retaining up to second-order terms in frequency, the analytical expressions of the low-frequency
expansion of the non-dimensional part of the total load are found to be in complete agreement with the
previous work by Stallybrass and Scherer (1975) and by Roy (1986). The advantage of the new method
presented here is that we illustrate this for various frequencies, and different aspect ratios of the elliptic
geometry. Numerical values of the total load under the disc can be predicted for a wide range of frequencies
not previously considered.

2. Basic equations

A rigid elastic elliptic plate with semi-axes a and b is vibrating at an angular frequency w while remaining
in frictionless contact with an elastic half space (Fig. 1). The equation of motion in terms of the dis-
placement vector i = (uy, u,, u.)e is given by

(A4 2u) graddivii — pcurlcurli + w?p,ii = 0, (2.1)

where 1 and u are the Lame constants and p, is the density.
The boundary conditions at z = 0 are
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Fig. 1. Elliptic plate on an elastic half space.

7, =0 for (x,y) € S,
T =0=1, Vi, (2.2)
U, = wo, (xay) GS,

where S is the elliptic contact area and wy is the constant amplitude of the vertical vibration produced by
the disc.
The solution is given by

*:@d)—i—@x@x( >+V><(ez ) (23)

where @, ¥, X are the potentials, and ¢, is the unit vector along the normal to the plate.
Using the cartesian co-ordinate system (x, y,z) with the origin at the centre of the disc and z-axis along
the normal to the plane, the potentials are of the form

/ / )exp [ —i(&x + ny) — viz]dédn,
:/_ /_ B(&,n) exp [ —i(&x + ny) — vaz]dédn, (2.4)

X = ‘/7 ‘/700C(Cv7'7) exp [ —1i(éx + ny) — sz] dédy,

where
( k2)1/2 /11 > krn
Vp = (k2 _ ;°l)l/2’ —k, < )\,] < kna n= 1,2 (25)
(;2 k2)1/27 ;“1 <kn
with

P P 22 2 2
k= by = — =&+ 2.6
1 F 2 ) 2 ) /Ll é ( )

The harmonic time dependence €’ is suppressed from now on. The displacement components u; and
stress components 7.; (j = x,y,z) are obtained from Eq. (2.3) using Eq. (2.4).
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3. Derivation of the integral equation

Expressing the boundary conditions in terms of the potentials, we obtain the following two-dimensional
dual integral equation (Roy, 1986)

// (&) exp[— (G + my)]dEdn =0, (x,7) €S,

(3.1)
| [ 5""“exp[—i(fxwy)]dédn:w (v.y) €5,
where
Fen = (@47 -8B/20 @+ mwn aen =" g, (3.2)

In order to obtain the solution of Eq. (3.1), we consider the normal stress under the plate is g(x, y), i.e.

/ / 1(& ) exp[—i(éx + ny)]dédn = g(x,y),

where

gxy) =0, (x,y)€S. (3.3)

Then, the first equation in Eq. (3.1) is satisfied. Substituting the value of 4,(¢,5) from Eq. (3.3) into the
second equation of Eq. (3.1), we get the following Fredholm integral equation of the first kind,

sz / : / / J !
o | [ arrts ey exp [ = ifete o) + v =310 }] ¥ ' dédn = wo (3.4)
2F (¢, 11
To represent the above equation in cylindrical polar coordinates, the following transformations are used:
(a&,bn) = (kcosy, ksiny), k€ [0,00), ye€]0,2m,
(x,y) = (arcos0, brsin0), rel0,1], 0€]0,2n], (3.5)
(x',)) = (apcos ¢, bpsing),  pc[0,1], ¢ € [0,2n].

Next, the normal stress under the disc g(p, ¢) is expressed in terms of Fourier cosine and sine series as

e(0,8) = S gt (p)cosnd + 3 g (p)sinndb (3.6)
n=0 n=1

and some standard representation (Appendix A) involving Bessel functions is used in Eq. (3.4).
Finally, we relate g*)(p) to the new functions ¢ (¢) through the Abel transformation as follows:

&) = 4,1, [0

(3.7)
st ¢ () = 4,1 (g5 ()],
where
[t () . _ 2,0t el
Al = [ L Gt Al =y / PR (38)

Proceeding as in Chatterjee and Roy (1990), we substitute Egs. (3.5) and (3.6) into Eq. (3.4) and by using
Eq. (3.7), the following infinite system of equations is obtained: for s =0,1,2,..., 00,
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1 o0 ) 00 2n 1
1 D (=) e / / / RPCTARE (k, 7) 96 ()01 /2 (kt) -1 /2 (k) cosny cossy dkdedy = £i(0),
n=0 0 0 0

(n+s)—even

(3.9)
where
Fi(k,z) = EE: i Uz(\;;kz) T (3.10)
RN =
K= (1-0/d), (3.11)
fs(«:)=TcWod% OZ(%lﬂ)dr. (3.12)

4. Polynomial representation of the solution

Following Mukherjee (1998), the unknown variable d)ff”(t) is now expanded in terms of orthogonal
Jacobi polynomials as

ZW” P (1 - 28,
o~ (4.1)
=Y PO (1 - 27,

J
Jj=0

where ;" and V" are the Jacobi coefficients.
Substituting Eq. (4.1) into Eq. (3.9) and using some integral expression involving Bessel functions (see
Appendix A), we obtain

1 SIS y o . 2n
1 221 (—i) snssW/./ / Fi(k, ) ui241/2(k)sami1/2(k) cossy cosny dkdy
n=0 j=0 0 0

(n+s)—even
—n/f PUT120(1 _2(1dl, Vs=0,1,2,..., 0. (4.2)
Now, using the transformation,

(k cosy, ksiny) = (au cosyy, bu sinyy) (4.3)

and applying certain properties of orthogonal polynomials (see Appendix B), Eq. (4.2) becomes, for
s=0,1,2,..., 0
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ZZAZ’;W” fwo fors=0 and m =0,
n=0 j=0
(n+s)—even

=0 fors=0 and m #0,
=0 for s # 0, (4.4)

where

1
4, = / / » Fy(u)ui2j1/2(aup)Jiomi12(aup)
o Jo

X cOS {ntanl (g tamﬂ) } cos {stan1 (g tanzﬂ) } dudy (4.5)

and

p =/ (1 -k} sin’y), (4.6)

_ B — k)"
e 7

Following Krenk and Schmidt (1982) by contour integration in the complex plane, 4;'; is reduced to the
following form:

/2 (tz y )1/2 (2)
A = / — / H aplkat)J,, o apk,t) dt
T e (P -1)27 402 - 2) P - ) plapkat) iy (aphot)

1 N1/20200 2
(I-2)7"r (=7 2)
+/ (tz _ 1/2)4 + t4(t2 _ '})2)(1 _ tZ) Hs‘<+2m+l/2(apkzt)Jn+2j+l/2(apk2t) dt

TC(SZ _ ,))2)]/2 @ » b
_ Gli(s)HSHmH/2 (apkss)Jyi2j12(apkss) | cos < ntan P tanys

X COS {stan1 (S tanxﬁ) } dyy  when (n+ 2j) = (s + 2m). (4.8)
Here, y = ki /k, and s is the real root of the equation:
2 2/7\2 202 2\1/2 2\1/2
G(t) =0, where G(t) = (£ — k5/2)" — (2 — k) " (F — k) (4.9)

and H,?() is the Hankle function of second kind.
For (n+ 2j) < (s + 2m), we have

Ay = A (4.10)

Thus, solving the equations in (4.4) the coeflicients W7 of Jacobi polynomials are obtained.
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5. Analytical solutions for low frequencies

For the case of low frequencies, we limit the solutions to o(k3). So, the terms of the orthogonal Jacobi
polynomials are retained up to order two and we obtain the coefficients W, and W of the Jacobi poly-
nomials solving the first two equations in Eq. (4.4) (see Appendix C). Substituting s =0 and » = 0 and
expanding the product of Bessel functions in the integrals of 4 in Eq. (4.8), we obtain integrals of the
following form:

1,,7/ A (1) dr — g/Z(S_)y UVACi D IV (5.1)
where
/212 0<r<y,
a = [ (52)
y<t<1.

@1/ (2= (1)

The total load to be applied on the disc in order to keep it stable against the given vibration is

1
P= // 7.(x,»,0)dxdy = 4ab,u/ Bo(¢) dt = dabuivy . (5.3)
K 0
Substituting the expression of W} in terms of I,s, we get
_ 2awmp lakyy  k3a* (4 I'n 3
P= X |:1 + K +2TC7 312E 2K +O(k2) R (54)

where E and K are the elliptic integrals of first and second kind and /, = m.
Expression (5.4) shows complete agreement with the expression obtained by Roy (1986) and Stallybrass
and Scherer (1975) for low frequencies.

6. Numerical results for low and high frequencies

Returning to our direct method, let us consider that f; and f> correspond to the real and imaginary part
of the reciprocal of the non-dimensional load 4paw,/(1 — V)P, i.e.

.. Auawg
Using Eq. (5.3), it can be expressed as
1 1
= 2
hi=if = oy (6.2)

where V' is Poisson’s ratio related by

, K12y
TR 20—y

We will now illustrate the numerical calculation of f; and f; by some examples.
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Table 1
Values of f; and /> retaining six and eight terms of the series expansion of ¢¢(¢) for y*> = 1/4
g=b/a ks Values of f Values of f;
For six terms For eight terms For six terms For eight terms
172 4 0.1150948 0.1150947 —-0.4780423 —0.4780422
1/2 5 0.06699269 0.0669926 —-0.3800982 —0.3800979
173 1 1.304853 1.304853 -0.6571907 -0.6571906
1/3 8 0.05460862 0.0546085 —0.3550709 —0.3550707
1/4 2 0.9965307 0.9965306 -0.8717572 -0.8717567
1/4 6 0.2025709 0.2025707 —-0.6169359 —0.6169356

6.1. Convergence of our method

We first compute 4" in Eq. (4.8) by direct integration with 7> = (1/4) and aspect ratio ¢ = (b/a) =
1,1/2,1/3,1/4 for different values of dimensionless frequencies k, in the range 0-10. Substituting these

alues in Eq. (4.4), we solve the linear equations to obtain the coefficients W} of Jacobi polynomials.

To test the convergence, we compared the numerical computation retalmng six and eight terms of the
series expansion of ¢; (). Table 1 shows that the successive values of f; and f; for the two cases are nearly
equal which implies the convergence of the solutions.

For the case of order six, we compute 4 for {s = 0,2,4,6,m =0,1,2,3,n=0,2,4,6 and j = 0, 1,2,3},
and 10 algebraic equations from Eq. (4.4) are solved.

6.2. Comparison for low-frequency range

For elliptic plates, applying the principle of variational approximation, Stallybrass and Scherer (1975)
computed the values of f; and f, for low frequencies when k, < 1. In Table 2, we compare the values of f
and f, obtained by their method with the values obtained by our direct method described here for

Table 2
Comparison between the values of f| and f; obtained by our direct method and approximate method by Stallybrass and Scherer, when

7 =1/4

q=0b/a 1 172 173 1/4
K = kb Direct Approximate Direct Approxi- Direct Approxi-  Direct Approxi-
method method method mate method mate method mate
method method method
h 0.0 0.9990228 1.0000 1.370574 1.3729 1.606897 1.6098 1.779925 1.7833
0.2 0.9797338 0.9807 1.311844 1.3138 1.488304 1.4910 1.584328 1.5874
0.5 0.8831638 0.8844 1.044378 1.0453 1.036755 1.0266 0.9965307 —
0.8 0.7256346 0.7263 0.7083953 - 0.6460894 - 0.6187256  —
1.0 0.6049319 0.6021 0.5207506 - 0.4695930 - 0.4497818 -
2.0 0.1683695 - 0.1150948 - 0.1050762 - 0.1016092  —
1 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 0.154477 0.1546 0.3031298 0.3036 0.4407426 0.4418 0.562666 0.5650
0.5 0.361446 0.3624 0.6414468 0.6472 0.802777 0.8141 09717572 -
0.8 0.5090966 0.5137 0.7640374 - 0.8275032 - 0.8432221 -
1.0 0.564684 0.5737 0.7538653 - 0.7800583 - 0.788866 -

2.0 0.478448 - 0.4780423 - 0.4757669 — 0.4759291 -
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a=1,2,3,4 b =1 and for different values of k = bk,. We notice that the agreement between both the
results is quite good for the case of low frequencies.

6.3. Application to high-frequency values

Finally, we illustrate the big advantage of our method. We compute the values of f; and f; for the case of
an elliptic disc over a large range in non-dimensional frequencies k(0 < k» < 10). For a circular plate, the
results completely agree with those obtained by Luco and Westmann (1971) for higher frequencies.
However, we are currently not in a position to compare our results with any other method dealing with
elliptical geometry.

In Figs. 2 and 3, the values of f; and f; are plotted against k,(0 < k, < 10) taking (b/a) = 1,1/2,1/3,1/4
and > = (1/4). Fig. 2 illustrates that the values of f; decrease as k, increases and implies that for

1 ] I
0 20 40 60 80 10:0 120
Dimensiontess frequency k,

Fig. 2. Plot of f; for various ellipses against the values of dimensionless frequency k, with y? = 1/4, where ¢ = b/a.
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Fig. 3. Plot of f; for different ellipses against the values of dimensionless frequency k, with y> = 1/4, where ¢ = b/a.
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comparatively larger values of frequencies those values of f; become constant. In Fig. 3, we notice that the
values of f, are independent of the aspect ratio ¢ for low frequencies. However at higher frequencies, the
aspect ratio appears to have a significant influence on f;. The peaks of the curves show that the resonance
frequency of an elliptic plate is larger than that of a circular plate and the resonance frequency increases as
the aspect ratios decrease.

The results obtained also predict that an elliptic disc can bear a larger load than a circular one.
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Appendix A

Some properties of Bessel functions are as follows:
(1) Following standard relation (Gradshteyn and Ryzhik, 1980) is used in Eq. (3.4),

exp [+ izcosf] = an(ii)"Jn (z) cosno,
n=0
1, n=0,
where ¢, = [2’ 0> 0.

2. The integral expression mentioned in Section 4 is

1
JS m
/ xy+1/2pn(:71/2,0)(1 _ 2x2)JS,1/2(xy)dx _ Ist2 +1/2(J’) )
0 y

Appendix B

On the right-hand side of Eq. (4.2) using Eq. (3.12), the following expression is obtained:
For s =0,

1 d 14 r 1
— [ ———=dr P 1?01 -20)d =/ PURO(L —2%)dl =1 for m =0,
/o{dé/o 7o r}m (1—20)d¢ , D (1 —20)d¢ m

=0 form#0.

Appendix C

Expanding the product of Bessel functions in a series expansion up to second-degree terms and using Eq.
(5.1), 4} in Eq. (4.9) are expressed as
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. 4
Ay = —2K +iakoly + - a’GLE + 0 (k).

2
A=Ay = — Eazkng + o(k3), (C.1)
2K 4
A(l)O] = — ? — m Zkgle + O(kg)

Substituting s =0, m =0, 1, n=0and j =0, 1 in Eq. (4.4), the following equations are obtained

00 7770 00 7770 _ WoT
AgoWy + A0, Wy =7

AWy + Agy W = 0.

Solving the Eq. (C.2) using Eq. (C.1), the expression in Eq. (5.4) is obtained.
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