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Abstract

The forced vibration of an elastic half space produced by a rigid elliptic indenter oscillating about an axis per-

pendicular to the plane face of the half space is considered. The boundary conditions lead to a two-dimensional dual

integral equation in terms of the unknown normal stress. By appropriate substitution, the dual integral equation is ®rst

reduced to a two-dimensional Fredholm integral equation. This is transformed to an in®nite set of equations using

Abelian transformations. Next, the Abel-transformed variable of the unknown normal stress is expanded in terms of

orthogonal Jacobi polynomials, and by solving the system of linear equations, orthogonal polynomial solutions are

obtained. The method used to obtain the orthogonal polynomial solutions of this problem is new and the major ad-

vantage of this expansion technique is that it is valid for all frequencies. Detailed numerical work has been given for the

total load on the disc for di�erent values of frequencies. Ó 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Orthogonal polynomial solution; Flat elliptic indenter; Multilayered elastic half space; Dual integral; JacobiÕs polynomials;

Transfer matrix

1. Introduction

Problems involving a vibrating elastic body in contact with an elastic medium are of considerable
practical interest. To improve dynamic models of buildings and large structures, to ascertain their stability
against earthquake vibrations or to design ultrasonic hardness testing equipment, it is essential to inves-
tigate the dynamic response of elastic foundations or elastic plates on elastic media. Although a large
number of papers have been devoted to the subject, most of them are concerned with the problem where the
contact region is circular.

The physical requirement of a uniform displacement under the rigid body and a zero stress at the surface
away from the body, leads to a mixed boundary value problem which can be expressed in terms of a two-
dimensional dual integral equation.
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In the case of a circular elastic plate, Robertson (1965) and Gladwell (1968) reduced the two-dimensional
dual integral equation to a one-dimensional Fredholm integral equation and obtained a series solu-
tion. Awojobi and Grootenhuis (1965) solved the dual integral equation by a series of expansion proce-
dure. A direct method is proposed by Krenk and Schmidt (1981) in which the integral equation is solved
expressing the vertical stress in terms of Legendre polynomials. The solution implies a direct matrix rela-
tion between stresses and deformations. Apart from the numerical results for the low-frequency cases,
Luco and Westmann (1971) developed numerical solutions by reducing the Fredholm integral equation
to a system of algebraic equations and obtained various dynamic compliances for large values of fre-
quencies.

In order to model the dynamics of various large structures, the results for foundations other than cir-
cular ones are required. Foundations generally have elliptic cross-section and the implications for such a
geometry are considered in the present paper. Stallybrass and Scherer (1975) used a variational procedure
and obtained the analytical expression for the reciprocal of the total load under the elliptic disc. Roy (1986)
reconsidered the elliptic geometry problem and reduced the dual integral equation into a Fredholm integral
equation of the ®rst kind which could be rearranged in a suitable form after separating out the terms
corresponding to the static solutions. Successive low-frequency terms are obtained by perturbing the static
solutions. So, for the case of elliptic punches, speci®c results have only been obtained for low values of
dimensionless frequency.

A knowledge of dynamic compliances for a larger frequency range is necessary if structural analysis is to
be performed incorporating the e�ect of soil±structure interaction. In this paper, we reformulate the
problem of dynamic compliances for the elliptic punch and obtain an orthogonal polynomial solution from
which we compute the numerical results for a signi®cantly wider range of frequencies than previously
available.

Following Roy (1986), the two-dimensional dual integral equation involving the unknown stress under
the punch is reduced to a Fredholm integral equation of the ®rst kind. Applying suitable transformations,
this equation can be converted into an in®nite system of equations involving the Abelian transformation of
the Fourier coe�cients of the unknown stress. Here, we express the unknown variable in terms of ortho-
gonal Jacobi polynomials. Using certain properties of orthogonal polynomials, an in®nite set of linear
equations involving the coe�cients of Jacobi polynomials is formed and by solving this set of equations, the
orthogonal polynomial solutions for dynamic compliances of the elliptic disc with vertical vibrations are
obtained. Retaining up to second-order terms in frequency, the analytical expressions of the low-frequency
expansion of the non-dimensional part of the total load are found to be in complete agreement with the
previous work by Stallybrass and Scherer (1975) and by Roy (1986). The advantage of the new method
presented here is that we illustrate this for various frequencies, and di�erent aspect ratios of the elliptic
geometry. Numerical values of the total load under the disc can be predicted for a wide range of frequencies
not previously considered.

2. Basic equations

A rigid elastic elliptic plate with semi-axes a and b is vibrating at an angular frequency x while remaining
in frictionless contact with an elastic half space (Fig. 1). The equation of motion in terms of the dis-
placement vector ~u � ux; uy ; uz

ÿ �
eixt is given by

�k� 2l�grad div~uÿ lcurl curl~u� x2q1~u � 0; �2:1�

where k and l are the Lame constants and q1 is the density.
The boundary conditions at z � 0 are
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szz � 0 for �x; y� 62 S;

szx � 0 � szy 8x; y;

uz � w0; �x; y� 2 S;

�2:2�

where S is the elliptic contact area and w0 is the constant amplitude of the vertical vibration produced by
the disc.

The solution is given by

~u � ~rU� ~r� ~r� ~ezW
� �

� ~r� ~ezX
� �

; �2:3�

where U, W, X are the potentials, and~ez is the unit vector along the normal to the plate.
Using the cartesian co-ordinate system (x; y; z) with the origin at the centre of the disc and z-axis along

the normal to the plane, the potentials are of the form

U �
Z 1

ÿ1

Z 1

ÿ1
A�n; g� exp � ÿ i�nx� gy� ÿ m1z�dndg;

W �
Z 1

ÿ1

Z 1

ÿ1
B�n; g� exp � ÿ i�nx� gy� ÿ m2z�dndg;

X �
Z 1

ÿ1

Z 1

ÿ1
C�n; g� exp � ÿ i�nx� gy� ÿ m2z�dndg;

�2:4�

where

mn �
k2

1 ÿ k2
n

ÿ �1=2
; k1 > kn;

i k2
n ÿ k2

1

ÿ �1=2
; ÿkn < k1 < kn;

ÿ k2
1 ÿ k2

n

ÿ �1=2
; k16 kn

2664 n � 1; 2 �2:5�

with

k1 � q1x
k� 2l

; k2 � q1x
l
; k2

1 � n2 � g2: �2:6�

The harmonic time dependence eixt is suppressed from now on. The displacement components uj and
stress components szj �j � x; y; z� are obtained from Eq. (2.3) using Eq. (2.4).

Fig. 1. Elliptic plate on an elastic half space.
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3. Derivation of the integral equation

Expressing the boundary conditions in terms of the potentials, we obtain the following two-dimensional
dual integral equation (Roy, 1986)Z 1

ÿ1

Z 1

ÿ1
A1�n; g� exp � ÿ i�nx� gy��dndg � 0; �x; y� 62 S;Z 1

ÿ1

Z 1

ÿ1

A1�n; g�k2
2m1

2F �n; g� exp � ÿ i�nx� gy��dndg � w0; �x; y� 2 S;
�3:1�

where

F �n; g� � n2
ÿ � g2 ÿ k2

2=2
�2 ÿ n2

ÿ � g2
�
m1m2; A1�n; g� � F �n; g�

m1

B�n; g�: �3:2�

In order to obtain the solution of Eq. (3.1), we consider the normal stress under the plate is g(x; y), i.e.

1

2p

Z 1

ÿ1

Z 1

ÿ1
A1�n; g� exp � ÿ i�nx� gy��dndg � g�x; y�;

where

g�x; y� � 0; �x; y� 62 S: �3:3�
Then, the ®rst equation in Eq. (3.1) is satis®ed. Substituting the value of A1(n; g) from Eq. (3.3) into the

second equation of Eq. (3.1), we get the following Fredholm integral equation of the ®rst kind,

1

2p

Z 1

ÿ1

Z 1

ÿ1

Z Z
s

k2
2m1

2F �n; g� g x0; y 0
ÿ �

exp
�ÿ i n�x� ÿ x0� � g�y ÿ y0�	�dx0 dy0 dndg � w0: �3:4�

To represent the above equation in cylindrical polar coordinates, the following transformations are used:

�an; bg� � �k cosv; k sinv�; k 2 �0;1�; v 2 �0; 2p�;
�x; y� � �ar cosh; br sinh�; r 2 �0; 1�; h 2 �0; 2p�;
�x0; y0� � �aqcos/; bq sin/�; q 2 �0; 1�; / 2 �0; 2p�:

�3:5�

Next, the normal stress under the disc g(q;/) is expressed in terms of Fourier cosine and sine series as

g�q;/� �
X1
n�0

gc
n�q�cosn/�

X1
n�1

gs
n�q� sinn/ �3:6�

and some standard representation (Appendix A) involving Bessel functions is used in Eq. (3.4).
Finally, we relate gc�s�

n �q� to the new functions /c�s�
n �t� through the Abel transformation as follows:

gc�s�
n �q� � Aÿ1

nÿ1 /c�s�
n �t�

h i
s:t: /c�s�

n �t� � Anÿ1 gc�s�
n �q�

� �
;

�3:7�

where

Anÿ1�f �q�� � tn

Z 1

t

q1ÿnf �q�
q2 ÿ t2� �1=2

dq; Aÿ1
nÿ1�g�t�� � ÿ

2

p
qn o

oq

Z 1

q

t1ÿng�t�
t2 ÿ q2� �1=2

dt: �3:8�

Proceeding as in Chatterjee and Roy (1990), we substitute Eqs. (3.5) and (3.6) into Eq. (3.4) and by using
Eq. (3.7), the following in®nite system of equations is obtained: for s � 0; 1; 2; . . . ;1;
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1

4

X1
n�0

�n�s�ÿeven

is�ÿi�nenes

Z 1

0

Z 2p

0

Z 1

0

k2fs�1=2t1=2F1�k; v�/c
n�t�Jnÿ1=2�kt�Jsÿ1=2�kf�cosnv cossvdk dt dv � fs�f�;

�3:9�
where

F1�k; v� � k2
2

������������������
v2 ÿ k2

1� �
p

v2 ÿ k2
2=2� �2 ÿ v2

������������������������������������
v2 ÿ k2

1� � v2 ÿ k2
2� �

p ; �3:10�

v � k
b

������������������������������
1ÿ k2

0 cos2 v� �;
q

k2
0 � 1

ÿ ÿ b2=a2
�
; �3:11�

fs�f� � pw0

d

df

Z f

0

rs�1������������������
f2 ÿ r2
ÿ �q dr: �3:12�

4. Polynomial representation of the solution

Following Mukherjee (1998), the unknown variable /c�s�
n �t� is now expanded in terms of orthogonal

Jacobi polynomials as

/c
n�t� �

X1
j�0

W n
j tnP nÿ1=2;0� �

j 1
ÿ ÿ 2t2

�
;

/s
n�t� �

X1
j�0

V n
j tnP nÿ1=2;0� �

j 1
ÿ ÿ 2t2

�
;

�4:1�

where W n
j and V n

j are the Jacobi coe�cients.
Substituting Eq. (4.1) into Eq. (3.9) and using some integral expression involving Bessel functions (see

Appendix A), we obtain

1

4

X1
n�0

X1
j�0

�n�s�ÿeven

is�ÿi�nenesW n
j

Z 1

0

Z 2p

0

F1�k; v�Jn�2j�1=2�k�Js�2m�1=2�k�cossv cosnvdk dv

� p
Z 1

0

fs�f�P sÿ1=2;0� �
m �1ÿ 2f2�df; 8 s � 0; 1; 2; . . . ;1: �4:2�

Now, using the transformation,

�k cosv; k sinv� � �au cosw; bu sinw� �4:3�
and applying certain properties of orthogonal polynomials (see Appendix B), Eq. (4.2) becomes, for
s � 0; 1; 2; . . . ;1,
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X1
n�0

X1
j�0

�n�s�ÿeven

Ams
n;jW

n
j �

p
b

w0 for s � 0 and m � 0;

� 0 for s � 0 and m 6� 0;

� 0 for s 6� 0; �4:4�

where

Ams
n;j �

Z 1

0

Z p=2

0

1

p
F2�u�Jn�2j�1=2�aup�Js�2m�1=2�aup�

� cos n tanÿ1 b
a

tanw

� �� �
cos s tanÿ1 b

a
tanw

� �� �
du dw �4:5�

and

p �
�����������������������������
1ÿ k2

0 sin2w
ÿ �q

; �4:6�

F2�u� �
k2

2 u2 ÿ k2
1

ÿ �1=2

u2 ÿ k2
2=2� �1=2 ÿ u2 u2 ÿ k2

1� �1=2 u2 ÿ k2
2� �1=2

: �4:7�

Following Krenk and Schmidt (1982) by contour integration in the complex plane, Ams
n;j is reduced to the

following form:

Ams
n;j � i

Z p=2

0

1

p

Z c

0

t2 ÿ c2� �1=2

t2 ÿ 1=2� �2 � t2 c2 ÿ t2� �1=2
1ÿ t2� �1=2

H �2�s�2m�1=2�apk2t�Jn�2j�1=2�apk2t�dt

24
�
Z 1

c

1ÿ t2� �1=2t2 t2 ÿ c2� �
t2 ÿ 1=2� �4 � t4 t2 ÿ c2� � 1ÿ t2� �H

�2�
s�2m�1=2�apk2t�Jn�2j�1=2�apk2t�dt

ÿ p s2 ÿ c2� �1=2

G0�s� H �2�s�2m�1=2�apk2s�Jn�2j�1=2�apk2s�
35 cos n tanÿ1 b

a
tanw

� �� �

� cos s tanÿ1 b
a

tanw

� �� �
dw when �n� 2j�P �s� 2m�: �4:8�

Here, c � k1=k2 and s is the real root of the equation:

G�t� � 0; where G�t� � t2
ÿ ÿ k2

2=2
�2 ÿ t2 t2

ÿ ÿ k2
1

�1=2
t2
ÿ ÿ k2

2

�1=2 �4:9�

and Hn
2( ) is the Hankle function of second kind.

For �n� 2j� < �s� 2m�, we have

Ams
n;j � Ajn

s;m: �4:10�

Thus, solving the equations in (4.4) the coe�cients Wn
j of Jacobi polynomials are obtained.
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5. Analytical solutions for low frequencies

For the case of low frequencies, we limit the solutions to o(k2
2). So, the terms of the orthogonal Jacobi

polynomials are retained up to order two and we obtain the coe�cients W 0
0 and W 0

1 of the Jacobi poly-
nomials solving the ®rst two equations in Eq. (4.4) (see Appendix C). Substituting s � 0 and n � 0 and
expanding the product of Bessel functions in the integrals of Ams

n;j in Eq. (4.8), we obtain integrals of the
following form:

In �
Z 1

0

K�t�tnÿ1dt ÿ p
������������������
s2 ÿ c2� �p

G0�s� sn n � 0; 1; 2; . . . �5:1�

where

K�t� �
t
��������
c2ÿt2
p

t2ÿ1=2� �2�t2
�������������������
c2ÿt2� � 1ÿt2� �

p ; 06 t6 c;

t3 t2ÿc2� � 1ÿt2� �1=2

t2ÿ1=2� �4�t4
�������������������
t2ÿc2� � 1ÿt2� �

p ; c6 t6 1:

2664 �5:2�

The total load to be applied on the disc in order to keep it stable against the given vibration is

P �
Z Z

s
szz�x; y; 0�dxdy � 4abl

Z 1

0

/0�t�dt � 4ablW 0
0 : �5:3�

Substituting the expression of W0
0 in terms of Ins, we get

P � 2aw0pl
K

1

�
� iak2I1

2K
� k2

2a2

2pK
4

3
I2E

�
ÿ I2

1 p
2K

�
� o k3

2

ÿ ��
; �5:4�

where E and K are the elliptic integrals of ®rst and second kind and I0 � p.
Expression (5.4) shows complete agreement with the expression obtained by Roy (1986) and Stallybrass

and Scherer (1975) for low frequencies.

6. Numerical results for low and high frequencies

Returning to our direct method, let us consider that f1 and f2 correspond to the real and imaginary part
of the reciprocal of the non-dimensional load 4law0= 1ÿ m0� �P , i.e.

f1 ÿ if2 � 4law0

�1ÿ m0�P : �6:1�

Using Eq. (5.3), it can be expressed as

f1 ÿ if2 � 1

p�1ÿ m0�
1

W 0
0

�6:2�

where m0 is PoissonÕs ratio related by

c2 � k2
1

k2
2

� 1ÿ 2m0

2�1ÿ m0� :

We will now illustrate the numerical calculation of f1 and f2 by some examples.
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6.1. Convergence of our method

We ®rst compute Ams
n;j in Eq. (4.8) by direct integration with c2 � �1=4� and aspect ratio q � �b=a� �

1; 1=2; 1=3; 1=4 for di�erent values of dimensionless frequencies k2 in the range 0±10. Substituting these
values in Eq. (4.4), we solve the linear equations to obtain the coe�cients W n

j of Jacobi polynomials.
To test the convergence, we compared the numerical computation retaining six and eight terms of the

series expansion of /c
n�t�. Table 1 shows that the successive values of f1 and f2 for the two cases are nearly

equal which implies the convergence of the solutions.
For the case of order six, we compute Ams

n;j for fs � 0; 2; 4; 6;m � 0; 1; 2; 3; n � 0; 2; 4; 6 and j � 0; 1; 2; 3g,
and 10 algebraic equations from Eq. (4.4) are solved.

6.2. Comparison for low-frequency range

For elliptic plates, applying the principle of variational approximation, Stallybrass and Scherer (1975)
computed the values of f1 and f2 for low frequencies when k26 1. In Table 2, we compare the values of f1

and f2 obtained by their method with the values obtained by our direct method described here for

Table 1

Values of f1 and f2 retaining six and eight terms of the series expansion of /c
n�t� for c2 � 1=4

q � b=a k2 Values of f1 Values of f2

For six terms For eight terms For six terms For eight terms

1/2 4 0.1150948 0.1150947 )0.4780423 )0.4780422

1/2 5 0.06699269 0.0669926 )0.3800982 )0.3800979

1/3 1 1.304853 1.304853 )0.6571907 )0.6571906

1/3 8 0.05460862 0.0546085 )0.3550709 )0.3550707

1/4 2 0.9965307 0.9965306 )0.8717572 )0.8717567

1/4 6 0.2025709 0.2025707 )0.6169359 )0.6169356

Table 2

Comparison between the values of f1 and f2 obtained by our direct method and approximate method by Stallybrass and Scherer, when

c2 � 1=4

q � b=a 1 1/2 1/3 1/4

j � k2b Direct

method

Approximate

method

Direct

method

Approxi-

mate

method

Direct

method

Approxi-

mate

method

Direct

method

Approxi-

mate

method

f1 0.0 0.9990228 1.0000 1.370574 1.3729 1.606897 1.6098 1.779925 1.7833

0.2 0.9797338 0.9807 1.311844 1.3138 1.488304 1.4910 1.584328 1.5874

0.5 0.8831638 0.8844 1.044378 1.0453 1.036755 1.0266 0.9965307 ±

0.8 0.7256346 0.7263 0.7083953 ± 0.6460894 ± 0.6187256 ±

1.0 0.6049319 0.6021 0.5207506 ± 0.4695930 ± 0.4497818 ±

2.0 0.1683695 ± 0.1150948 ± 0.1050762 ± 0.1016092 ±

f2 0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2 0.154477 0.1546 0.3031298 0.3036 0.4407426 0.4418 0.562666 0.5650

0.5 0.361446 0.3624 0.6414468 0.6472 0.802777 0.8141 0.9717572 ±

0.8 0.5090966 0.5137 0.7640374 ± 0.8275032 ± 0.8432221 ±

1.0 0.564684 0.5737 0.7538653 ± 0.7800583 ± 0.788866 ±

2.0 0.478448 ± 0.4780423 ± 0.4757669 ± 0.4759291 ±
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a � 1; 2; 3; 4; b � 1 and for di�erent values of j � bk2. We notice that the agreement between both the
results is quite good for the case of low frequencies.

6.3. Application to high-frequency values

Finally, we illustrate the big advantage of our method. We compute the values of f1 and f2 for the case of
an elliptic disc over a large range in non-dimensional frequencies k2�06 k26 10�. For a circular plate, the
results completely agree with those obtained by Luco and Westmann (1971) for higher frequencies.
However, we are currently not in a position to compare our results with any other method dealing with
elliptical geometry.

In Figs. 2 and 3, the values of f1 and f2 are plotted against k2�06 k26 10� taking �b=a� � 1; 1=2; 1=3; 1=4
and c2 � �1=4�. Fig. 2 illustrates that the values of f1 decrease as k2 increases and implies that for

Fig. 2. Plot of f1 for various ellipses against the values of dimensionless frequency k2 with c2 � 1=4, where q � b=a.

Fig. 3. Plot of f2 for di�erent ellipses against the values of dimensionless frequency k2 with c2 � 1=4, where q � b=a.
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comparatively larger values of frequencies those values of f1 become constant. In Fig. 3, we notice that the
values of f2 are independent of the aspect ratio q for low frequencies. However at higher frequencies, the
aspect ratio appears to have a signi®cant in¯uence on f2. The peaks of the curves show that the resonance
frequency of an elliptic plate is larger than that of a circular plate and the resonance frequency increases as
the aspect ratios decrease.

The results obtained also predict that an elliptic disc can bear a larger load than a circular one.
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Appendix A

Some properties of Bessel functions are as follows:
(1) Following standard relation (Gradshteyn and Ryzhik, 1980) is used in Eq. (3.4),

exp � � iz cosh� �
X1
n�0

en��i�nJn�z� cosnh;

where en � 1; n � 0;
2; n > 0:

�

2. The integral expression mentioned in Section 4 is

Z 1

0

xs�1=2P sÿ1=2;0� �
m 1

ÿ ÿ 2x2
�
Jsÿ1=2�xy�dx � Js�2m�1=2�y�

y
:

Appendix B

On the right-hand side of Eq. (4.2) using Eq. (3.12), the following expression is obtained:
For s � 0,

Z 1

0

d

df

Z f

0

r��������������
f2 ÿ r2

p dr

( )
P ÿ1=2;0� �

m �1ÿ 2f2�df �
Z 1

0

P ÿ1=2;0� �
m �1ÿ 2f2�df � 1 for m � 0;

� 0 for m 6� 0:

Appendix C

Expanding the product of Bessel functions in a series expansion up to second-degree terms and using Eq.
(5.1), Ams

n;j in Eq. (4.9) are expressed as
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A00
0;0 � ÿ2K � iak2I1 � 4

3p
a2k2

2I2E � o k3
2

ÿ �
;

A00
0;1 � A10

0;0 � ÿ
2

15p
a2k2

2I2E � o k3
2

ÿ �
;

A10
0;1 � ÿ

2K
5
ÿ 4

21p
a2k2

2I2E � o k3
2

ÿ �
:

�C:1�

Substituting s � 0, m � 0, 1, n � 0 and j � 0, 1 in Eq. (4.4), the following equations are obtained

A00
0;0W 0

0 � A00
0;1W 0

1 �
w0p

b
;

A10
0;0W 0

0 � A10
0;1W 0

1 � 0:
�C:2�

Solving the Eq. (C.2) using Eq. (C.1), the expression in Eq. (5.4) is obtained.
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